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Abstract—Motivated by the performance demands and stringent timing
requirements of safety-critical systems like avionics and autonomous
vehicles, research has focused on providing timing guarantees for the
scheduling of Directed Acyclic Graph (DAG) tasks in multicore sys-
tems. The structural complexity and timing anomalies make this prob-
lem challenging. Existing methods bound the Worst-Case Response
Time (WCRT) of tasks through static analysis, but these bounds are
complicated, difficult to validate, and often remain pessimistic for many
scheduling scenarios. Runtime intervention can be effective in eliminat-
ing timing anomalies and providing timing guarantees; however, it is
ineffective for anomaly-free scheduling scenarios, leads to non-work-
conserving schedules, and incurs additional overhead. This paper pro-
poses a hybrid approach to identify timing anomalies in DAG scheduling
scenarios within a system, providing tighter WCRT solutions. The static
analysis first offers a sufficient anomaly test to directly identify some
anomaly-free DAG scheduling scenarios. Leveraging a wide range of
scheduling data collected from the running system or its simulator, we
then apply a machine learning approach to train a binary classification
model, achieving an accuracy of 99.5%. Identifying the anomaly status
enables the application of more precise WCRT bounds for different
scheduling scenarios, leading to improved system performance. Specifi-
cally, we shorten the WCRT bounds for anomaly-free DAG scheduling by
an average of up to 21.58%, with a maximum reduction of up to 55.47%
compared to the state-of-the-art method.

Keywords: DAG scheduling, timing anomaly, machine learning, real-
time systems

1 INTRODUCTION

The growing complexity and strict timing demands in automo-
tive and avionic real-time systems exemplified by Tesla’s Full
Self-Driving (FSD) computer1, highlights the need for advanced
planning and navigation, with robust real-time capabilities. These
systems must operate flawlessly and their tasks must meet their
deadlines to ensure the safety and efficiency of autonomous
vehicles in precision-critical environments with minimal human
oversight. These requirements drive the need to effectively manage
complex task models with dependencies in multicore systems,
among which many computational workloads, such as Tensor-
Flow2 and data processing pipelines in Apache Spark [1], can be
effectively represented as Directed Acyclic Graphs (DAGs), where
nodes often referred to as individual processing units, and edges
indicate the dependencies between these units. The branching

1. https://www.tesla.com/engb/support/autopilo
2. https://www.tensorflow.org/

structure within a DAG illustrates the inherent parallelism within
such workloads.

The complexity of DAG structures and multicore interactions
leads to timing anomalies inherent in global work-conserving
DAG scheduling with a limited preemption scheme (see Sec-
tion 3), making timing guarantees challenging. In a scheduling
scenario (i.e., a given DAG task scheduled on a specific number
of cores), timing anomalies occur when nodes execute for a shorter
time than expected at runtime, but the shorter local execution times
paradoxically lead to a longer overall makespan due to changes in
execution order [2].

Extensive research has been conducted to provide timing
guarantees for the scheduling of DAG tasks. A significant propor-
tion [3]–[6] develop Worst-Case Response Time (WCRT) bounds
through static analysis. These bounds assume that the Worst-
Case Execution Time (WCET) of each node within the DAG
can be upper bounded by static analysis [7]. WCRT bounds are
determined by considering the worst possible interference and
blocking between nodes in a scheduling scenario and calculating
the makespan without being affected by anomalies. However,
these static generic bounds face bottlenecks: simpler bounds [3],
[4] incur high pessimism, limiting system performance; sophisti-
cated bounds [6] are difficult to validate and have known flaws
[8], with pessimism still existing in certain scheduling scenarios.

Instead of providing WCRT bounds, studies have intro-
duced runtime approaches to eliminate timing anomalies in DAG
scheduling [9]–[11]. One such approach involves monitoring the
actual runtime execution of each node within a DAG and idling the
core to preserve the pre-established execution order [10]. While
this method provides timing predictability without complicated
analysis, it renders the system non-work-conserving, as ready
nodes may remain idle even when a core is available. Despite
these efforts, such a solution is ineffective, especially for those
scheduling scenarios without timing anomalies. Additionally, on-
line monitoring introduces overhead, potentially impacting system
performance. Therefore, providing tailored WCRT solutions for
various scheduling scenarios is demanded to reduce pessimism
while guaranteeing overall safety, but a more comprehensive
understanding of the system is required.

Contributions: This paper provides timing guarantees for
DAG scheduling on multicore systems by introducing a hybrid ap-
proach to identify the anomaly status of different DAG scheduling
scenarios and provide tighter WCRT bounds. Our contributions
can be listed as follows:

• A comprehensive literature review is conducted, focusing on
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the development of timing guarantees in DAG scheduling.
• We develop a novel sufficient anomaly test based on a sim-

ulation algorithm and static analysis to identify scheduling
scenarios without timing anomalies.

• Leveraging on the scheduling data collected from the running
system or its simulator, utilising the identified anomaly-free
scheduling scenarios based on the anomaly test and observed
anomaly cases, we apply a machine learning approach to train
a binary classification model that can classify the anomaly
status of scheduling scenarios with an accuracy of 99.5%.

• Extensive evaluation results show that the proposed ap-
proach allows the application of different WCRT bounds and
shortens WCRT bounds for anomaly-free scheduling by an
average of up to 21.58%, with a maximum reduction of up to
55.47% compared with the state-of-the-art.

Organisation: This paper is structured as follows: Section 2
reviews the literature. Section 3 provides detailed definitions of
and nomenclature for the system and task models. Section 4
introduces the technical details of the proposed hybrid analysis
approach. The evaluation results are demonstrated in Section 5,
and finally, Section 6 concludes the paper.

2 RELATED WORK

The inherent complexity of DAG structures makes it challenging
to provide timing guarantees under multicore scheduling. In the
meantime, partitioned scheduling offers a more deterministic allo-
cation of DAG nodes and helps mitigate uncertainty in execution.
Fonseca et al. [12] focus on the partitioned scheduling of sporadic
DAG tasks, developing WCRT bounds under static task allocation
to provide schedulability guarantees. Several subsequent works
extend this line of research, exploring slight variations in task and
scheduling models [13], [14]. However, while partitioned schedul-
ing enhances predictability, it also restricts flexibility and may
lead to reduced system utilization. In contrast, global or federated
scheduling introduces more complexity but can potentially achieve
higher system utilisation.

Many studies have examined global or federated work-
conserving scheduling, where ready nodes are assigned to cores
as they become available. Bonifaci et al. [15] compare Earliest
Deadline First (EDF) and Deadline Monotonic (DM) scheduling
for DAG tasks in multicore systems under global work-conserving
conditions. They derive speedup bounds for both strategies. Build-
ing upon this, Baruah improves the speedup bound for global
EDF scheduling in [16]. Similarly, Qamhieh et al. [17] propose
a stretching algorithm that preserves task dependencies through
timing constraints, further improving the speedup bound under
global EDF.

Baruah [18] then turns to federated scheduling, extending
previous work to arbitrary-deadline DAG tasks. By dedicating
processors to high-density tasks and partitioning the rest, the
proposed algorithm achieves a tight speedup bound. In a follow-
up, Baruah [19] extends the federated model to support condi-
tional sporadic DAG tasks, where each task may execute one
of several possible DAGs at runtime. Subsequently, Baruah et
al. [20] revisit global EDF scheduling for conditional sporadic
DAGs. They develop a speedup bound that accounts for execution
path uncertainty, allowing more dynamic utilization of shared
multicore resources. Wang et al. [21] further advance global EDF
scheduling for DAG tasks with arbitrary deadlines. Their proposed

analysis techniques yield improved capacity augmentation bounds
in single-task scenarios.

Beyond speedup and augmentation bounds, many studies have
derived WCRT bounds for DAG tasks under global scheduling,
typically assuming simple preemptive scheduling policies. Melani
et al. [3] assume fixed-priority scheduling and develop a response-
time analysis framework for conditional DAG tasks, providing
tighter and more general WCRT bounds, which also apply to
conventional DAGs. Fonseca et al. [22], [23] further reduce inter-
ference through structural analysis of DAGs, resulting in improved
bounds. More recently, He et al. [24]–[26] focus on single DAG
tasks, progressively refining WCRT bounds across multiple papers
by precisely capturing DAG paths and minimizing interference.

Serrano et al. [4] investigate WCRT bounds under limited
preemption, where a node, once started, cannot be preempted. This
assumption better reflects practical systems, since preemption at
the level of individual nodes often incurs costly context switches.
Similarly, Nasri et al. [27] address WCRT analysis for limited-
preemptive DAG tasks but diverge from conventional methods by
adopting a richer task model, including release jitter, execution-
time uncertainty, and inter-task dependencies.

Most of the aforementioned works apply task-level priority
schemes. He et al. [5] introduce intra-task priority assignment,
showing that prioritizing individual nodes can reduce interfer-
ence and significantly tighten WCRT bounds with preemptive
scheduling. This approach is further refined in [28] through a
more effective priority assignment strategy. Zhao et al. [6] extend
the intra-task ordering concept to limited-preemption scheduling
by introducing a provider-consumer model that guides priority
assignment and WCRT analysis. Their follow-up work [29] adapts
this approach to federated scheduling, supporting multiple DAG
tasks. However, Chen et al. [8] identify a flaw in the WCRT
analysis presented in [6], which remains unresolved in [29]. In
response, Chen et al. propose a new analysis technique for both
single- and multi-DAG task systems. Their method accurately
computes the worst-case finish time of each node, setting a new
state-of-the-art bound under global work-conserving with limited
preemption. Finally, He et al. [30] present the first application
of intra-task fixed-priority assignment to conditional DAG tasks
under preemptive scheduling. Instead of a conventional analysis
approach, Chen et al. [10] provide WCRT bounds by simulating
DAG execution under global scheduling with limited preemption.
Their dynamic scheduling strategy maintains node execution order
to prevent timing anomalies and ensure timing guarantees. Sun et
al. [31] formulate WCRT computation as an SMT optimisation
problem to determine the exact WCRT bound.

DAG scheduling has also been extended to accommodate more
complex task models. Bi et al. [32] incorporate mutually exclu-
sive nodes into the prioritized DAG model and derive rigorous
WCRT bounds. In contrast, Liang et al. [33] proactively assign
mutually exclusive groups to DAG nodes, transforming scheduling
behaviour and enabling WCRT analysis via a critical mutual path
without explicitly modeling interference. Finally, the survey by
Verucchi et al. [34] provides a comprehensive review of recent ad-
vances in DAG task scheduling for real-time systems. It compares
global and partitioned approaches, highlighting their theoretical
foundations, practical effectiveness, and industrial applicability.

Many challenges in the field of real-time systems are effec-
tively addressed by more than single approach. For instance, Jones
et al. [35] propose a hybrid approach for real-time sequencing and
scheduling by integrating neural networks, simulations, genetic
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TABLE 1: Table of notations.

Notation Description

Γ Set of sporadic tasks
τi A given task with index i
Ji,1 A job instance of τi with index 1
Gi = (Vi, Ei) Graph defining the set of activities forming task τi
Vi Set of nodes in τi
Ei Set of directed edges connecting nodes in τi
vj , vx Node with index j, x in DAG task τi
Cτi Total WCET of nodes within the DAG
Cvj , C′

vj
WCET, varying execution time of node vj

Pvj Priority of node vj
pre(vj), suc(vj) Set of predecessors, successors of node vj
anc(vj), des(vj) Set of ancestors, descendants of node vj
vsrc, vsink Source node, sink node
f ′
vj

, s′vj Varying finish time, start time of node vj
fpre
vj Time when node vj is eligible to execute after all its

predecessors finish
Λ, |Λ|, λm Set of cores, the total number of cores, core with

index m in the system
Con(vj) Set of concurrent nodes of node vj

f
|Λ|
vj , s|Λ|

vj Finish time, start time of node vj in the
long-makespan scenario

algorithms, and a trace-driven knowledge acquisition technique.
Lampka et al. [36] tackle the complexity of analysing embedded
real-time systems by combining timed automata for state-based
timing accuracy with analytic methods for system simplicity.
Reghenzani et al. [37] tackle the problem of estimating WCET in
safety-critical embedded systems using a probabilistic approach.
They leverage Measurement-Based Probabilistic Timing Analysis
(MBPTA) and Extreme Value Theory (EVT) to model and predict
extreme execution times.

Overall, current research provides timing guarantees for the
scheduling of DAG tasks through purely static analysis. This re-
search primarily relies on offline assumptions of system informa-
tion, inevitably incorporating considerable pessimism. Although
the WCRT bounds are gradually improving through more detailed
static analysis, this progress comes at the cost of increasing
complexity and presents challenges in verifying their correctness.
Monitoring and preserving the execution order of nodes within
DAG tasks can provide timing predictability for the scheduling.
However, it incurs runtime overheads and makes the system non-
work-conserving. To the best of our knowledge, this is the first
paper that incorporates both static analysis and machine-learning
approaches to provide timing guarantees for DAG scheduling.

3 SYSTEM MODEL

3.1 Task model
We focus on a system with a set of sporadic tasks Γ, in which τi
represents a given task with index i. Each τi generates a potentially
unbounded sequence of job instances Ji,1, Ji,2, ..., Ji,z . As each
job is only allowed to be executed at a time, hence we refer to a
task and its job as equivalent entities in terms of execution within
the system. Each task in the system is a DAG task and is defined
by {Cτi , Ti, Di,Gi = (Vi, Ei)}. Here, Cτi is the total WCET
of nodes within the DAG, Ti denotes its period (or the minimum
inter-arrival time between jobs), Di provides a constrained relative
deadline, i.e., Di ≤ Ti, and Gi is a graph that defines the set of
activities forming the task. The graph is further detailed as Gi =
(Vi, Ei), where Vi denotes the set of nodes, and Ei ⊆ (Vi × Vi)
represents the set of directed edges connecting any two nodes. A

node in τi is denoted as vi,j ∈ Vi, where the index j specifies
the node index, and index i indicates that it belongs to τi. For
simplicity, the subscript of the DAG task (i.e., i for τi) is omitted
when discussing a single DAG task.

The WCET of a node vj is denoted as Cvj . In reality, nodes
are likely to execute less than their WCET; we denote their varying
execution times in different releases as C ′

vj . Each node vj is
assigned an individual priority, denoted as Pvj (the larger the
number, the higher the priority). If two nodes, vj and vx, are
connected by a directed edge (i.e., (vj , vx) ∈ E), vx can only start
executing after vj has finished executing. Thus, vj is a predecessor
of vx, and vx is a successor of vj .

The predecessors and successors of node vj can be formally
defined as pre(vj) = {vx|vx ∈ Vi ∧ (vx, vj) ∈ E} and
suc(vj) = {vx|vx ∈ Vi ∧ (vj , vx) ∈ E}, respectively. Nodes
that are either direct or transitive predecessors and successors
of a node vj are termed its ancestors anc(vj) and descendants
des(vj), respectively.

A node vj with pre(vj) = ∅ or suc(vj) = ∅ is referred to
as the source node vsrc or sink node vsink, respectively. As with
most existing work [5], [6], [28], we assume a DAG task always
starts with one source and ends with one sink node; otherwise, a
dummy node without utilisation is added to the beginning or the
end of the DAG.

3.2 System and scheduling model

We focus on a homogeneous multicore system. From the task
level, the scheduler allocates a set of cores Λ to schedule a DAG,
where |Λ| defines the total number of cores and λm determines
the core with an index m. These cores are not utilised until the
allocated DAG exits the system. For nodes within a DAG, we
apply a global fixed-priority scheduling method with the limited
preemption scheme (nodes are non-preemptive once they start
executing) in a work-conserving manner [4]. For all nodes ready to
execute, the scheduler follows the highest-priority-first execution
order and keeps dispatching nodes when a core idles. We do not
presume any priority assignment for nodes.

Relevant notations are summarised in Table 1. We further
introduce the additional definitions and provide an intuitive ex-
ample of scheduling a DAG in Example 1 to aid the explanation
throughout the paper.

Definition 1. Concurrent nodes [8]: For a pair of nodes vj , vx ∈
Vi, if vx is neither the ancestors of vj (i.e. vx /∈ anc(vj)) nor
the descendants of vj (i.e. vx /∈ des(vj)), it is referred to as a
concurrent node of vj . The set of concurrent nodes of vj is denoted
as Con(vj) and is expressed as Equation 1.

Con(vj) = {vx|vx ∈ Vi∧
vx /∈ anc(vj) ∧ vx /∈ des(vj) ∧ vx ̸= vj}

(1)

Definition 2. Delay: A node is considered delayed when it is
eligible to execute but is prevented from doing so due to blocking
by concurrent low-priority nodes, interference from concurrent
high-priority nodes, or both. Direct delay refers to the immediate
delay experienced by the node, while indirect delay is incurred
transitively through its predecessors or ancestors.

Definition 3. Makespan: For a given DAG task with nodes
executing with varying execution times up to their WCETs, the
finish time of the sink node denotes the makespan of the task in
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Fig. 1: Scheduling of a DAG task.

any given scenario. The WCRT of a DAG determines its worst-
case makespan in any possible scenario.

Definition 4. Scheduling scenario: In this paper, a scheduling
scenario refers to a DAG task scheduled on a given number of
cores. The execution times of nodes in a scheduling scenario can
vary across different releases. The varying start and finish times
for vj are denoted as s′vj and f ′

vj , respectively. The time when a
node is eligible to execute after all predecessors have finished is
denoted as f pre

vj .

Definition 5. Long-makespan scenario: The scheduling scenario
where all nodes execute up to their WCETs. In a long-makespan
scenario, the start and finish time of a given node vj are denoted
as s|Λ|

vj and f
|Λ|
vj respectively.

Example 1. Figure 1 shows the scheduling of a DAG task
on a dual-core system in our scheduling context; v1 is the
source node, and v6 is the sink node. The descendants of v1
are des(v1) = {v2, v3, v4, v6}, and the ancestors of v6 are
anc(v6) = {v1, v2, v3, v4}. Taking v3 as an example, its WCET
is Cv3 = 3, its priority is Pv3 = 3, and its concurrent nodes are
Con(v3) = {v2, v4}. The predecessors and successors of v3 are
pre(v3) = {v1} and suc(v3) = {v6}.

Assuming each node executes up to its WCET (i.e. long-
makespan scenario), as shown in the figure, v1 initially executes
on core λ1 until t = 1. At this time, nodes {v2, v3, v4} become
eligible to execute. Since {v2, v3} have the highest priorities, they
are scheduled first; v4 begins at t = 3 on λ1 in a work-conserving
manner. Then v6 starts at t = 5 and ends at t = 7 resulting in the
makespan of the DAG equal to 7 in this scenario.

Definition 6. Timing anomaly: The timing anomaly (or anomaly)
refers to a DAG task in a scheduling scenario that has a longer
makespan than its long-makespan scenario. An example is illus-
trated in Example 2.

Example 2. Figure 2 presents a DAG task scheduling on a
dual-core system and its two abstracted execution Gantt charts
(Simulation and Anomaly). As shown in the Simulation chart,
all nodes follow the scheduling rule that we defined in Section

Simulation

Anomaly

t0 1 2 3 4 5 6 7 8 9 10

Fig. 2: An example of timing anomaly [10].

3 and each node executes up to its WCET which results in a
simulation makespan for the DAG of 9 units. However, in the
Anomaly scenario, v2 executes for only one unit of time, from
t = 1 to t = 2, which initially appears to be an improvement.
However, due to limited preemption, this alters the execution order
of v4, v5, and v6, resulting in a longer makespan of 10 units.

4 A HYBRID ANALYSIS APPROACH

In this section, we introduce a hybrid analysis approach to identify
the anomaly status of different DAG scheduling scenarios. First,
we will formulate the problem we are targeting. Next, we will in-
troduce an anomaly test built through the static analysis approach,
followed by proposing a binary classification model.

4.1 Problem formulation
As illustrated by Definition 6 and Example 2, the timing anomaly
in a scheduling scenario occurs when the actual makespan turns
out to be longer than its long-makespan scenario. Conversely,
if we can ensure that a scheduling scenario does not exceed its
long-makespan scenario, which is considered anomaly-free in this
work, we can upper bound the WCRT of the scheduling scenario
with the simulated long-makespan scenario. This method likely
yields a tighter bound than conventional static analysis because the
simulated bound is an exact bound [10]. For scheduling scenarios
with the anomaly, traditional bounds can still ensure safety. There-
fore, our goal is to develop a hybrid analysis approach to reliably
identify the anomaly status of different scheduling scenarios.

4.2 Anomaly test with static analysis
In this subsection, we describe the first part of our hybrid ap-
proach, which utilises a static analysis method to build an anomaly
test based on the simulated long-makespan scenario. The anomaly
test can identify whether a DAG task in a given scheduling sce-
nario can overrun its long-makespan scenario, thereby determining
its anomaly status.

The prerequisite step of constructing the anomaly test is to
develop an algorithm presented in Algorithm 1 to simulate the
long-makespan scenario of a given DAG task on a fixed number
of cores. This algorithm determines the start and finish times of
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each node, as well as the overall makespan of the DAG. We do
not claim this is an optimal algorithm for simulating the long-
makespan scenario.

Algorithm 1: Long-makespan scenario simulation
1 Λ← {λ1, λ2, . . . , λ|Λ|} , Q← {v1, v2, . . . , vn},

FinishT imes← {}, StartT imes← {}
2 while Q ̸= ∅ do
3 Sort Λ by load(λ) in ascending order;
4 R← {vj ∈ Q : vj .isReady()} ;
5 Sort R by Pvj in descending order;
6 allocated← FALSE;
7 foreach vj ∈ R do
8 if load(Λ[1]) ≥ fpre

vj then
9 StartT imes[vj ]← load(Λ[1]);

10 Add vj to Λ[1];
11 load(Λ[1])← load(Λ[1]) + Cvj ;
12 FinishT imes[vj ]← load(Λ[1]);
13 Remove vj from Q;
14 allocated← TRUE;
15 break;
16 end
17 end
18 if not allocated then
19 vmin ← node in R with minimum fpre

vj ;
20 StartT imes[vmin]← fpre

vmin
;

21 Add vmin to Λ[1];
22 load(Λ[1])← fpre

vmin
+ Cvmin ;

23 FinishT imes[vmin]← load(Λ[1]);
24 Remove vmin from Q;
25 end
26 end
27 makespan← max(values of FinishT imes);
28 return FinishT imes, StartT imes,makespan;

The algorithm begins with an initialisation phase (line 1), set-
ting up the processing cores Λ, the node queue Q with nodes from
the DAG task τi, and arrays StartT imes and FinishT imes to
store the start and finish times of each node.

The key of the algorithm is a scheduling loop (line 2), which
continues until all nodes are scheduled. Each iteration sorts the
cores by workload (load(λ) in line 3) to prioritise the least
loaded core (load(Λ[1])) for the next node allocation, ensuring
a work-conserving approach. Here, workload refers to the amount
of execution time already assigned to each core. The algorithm
then identifies the subset of nodes R that are ready for execution
based on their dependencies (line 4), as a node is ready if all its
predecessors have been scheduled.

Within this loop, the algorithm sorts the ready nodes R by
priority (line 5), ensuring that higher-priority nodes are scheduled
first. It attempts to allocate a node according to the sorted order
from R to the least loaded core (lines 7-17). A node is assigned
to a core if the core’s workload is sufficient to start the node
immediately, based on the node’s maximum predecessor finish
time fpre

vj (line 8). If the condition is met, both the node’s times
and the core’s workload are updated. The node is removed from
Q and this is deemed a successful allocation(lines 9-13).

If no nodes in the ready queue can be allocated to the least
loaded core due to unresolved dependencies, the node with the
earliest fpre

vj is assigned to the core (lines 18-25). This ensures
that the node with the earliest eligible execution time is scheduled.

Finally, the algorithm calculates the makespan as the maxi-
mum value in FinishT imes (line 27) and returns the start and

finish times for each node along with the makespan, providing a
complete snapshot of the scheduling process.

The overall time complexity of Algorithm 1 is governed by
its scheduling loop. Initially, the algorithm prepares n nodes from
the DAG task τi in the queue Q. Each iteration of the while-
loop removes exactly one node from Q, either through successful
allocation (Lines 7–13) or fallback scheduling (Lines 18–24). As
no node is revisited, the loop executes exactly n times. Within each
iteration, sorting the cores Λ by workload requires O(|Λ|log|Λ|)
time; since |Λ| is typically a small constant, this is negligible in
asymptotic analysis. Identifying the ready set R ⊆ Q involves
checking dependencies for up to n nodes, requiring O(n) time.
Sorting R by priority incurs O(n log n) time in the worst case.
The subsequent allocation loop and fallback selection each take at
most O(n) time. Thus, each iteration takes O(n log n) time, lead-
ing to an overall worst-case time complexity of O(n2 log n). In
practice, due to a sparsely populated ready set and a small number
of cores, the observed complexity often approaches O(n2).

Following Algorithm 1, we propose the following lemma to
validate the fixed timing metrics of the long-makespan scenario
which allows direct referencing for the following analysis.

Lemma 1. For a DAG task scheduling on a given number of cores
|Λ| in the system described in Section 3, assuming each node (say
vj) executes up to its WCET, we will have the following fixed
timing metrics in the long-makespan scenario: the start (s|Λ|

vj ) and
finish (f |Λ|

vj ) times of each node vj , as well as the makespan of the
DAG.

Proof. Consider the following invariant conditions within the
scheduling: 1) The number of processing cores is fixed, lim-
iting the maximum concurrent node execution and setting an
upper bound on throughput; 2) The DAG structure and node
priorities remain unchanged, ensuring a consistent sequence for
nodes becoming ready; and 3) The scheduling algorithm is work-
conserving and non-preemptive, meaning: (a) all cores are utilised
as long as there are ready nodes, preventing idling, and (b)
nodes with constant execution times run to completion without
interruption, maintaining a consistent timeline. Therefore, under
these conditions, the lemma holds.

The development of Algorithm 1 allows us to get the s
|Λ|
vj and

f
|Λ|
vj of each node vj . Based on the metrics, an anomaly test is built

through static analysis to analyse whether each node can finish
later than its forecasted finish time (f |Λ|

vj ) in any circumstances.
If any node is found that can potentially execute beyond its fore-
casted finish time, we identify that the entire DAG is susceptible
to timing anomalies under such a scheduling scenario. Prior to
beginning the analysis, we stipulate the following assumption:

Assumption 1. When we analyse a given node, vj , in the long-
makespan scenario, it is assumed that all nodes, denoted as vx,
which start before vj (s|Λ|

vx < s
|Λ|
vj ), have already passed their

anomaly tests and will not finish later than their predicted finish
times, f |Λ|

vx . This condition is consistently achievable by analysing
the nodes in the order of their starting times.

According to the Example 2, v2 finishes earlier, which ad-
vances the starting times of v4 and v5 but delays v6, causing it to
finish later than its f |Λ|

v6 . Based on this observation, we define the
following lemma with a more detailed analysis.
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Lemma 2. For a given node vj , it may finish later than its f |Λ|
vj .

The only reason for this delay is the early completion of some
nodes within the DAG could potentially bring forward the eligible
starting times of other nodes, while delaying vj due to limited core
resources and non-preemptive constraints, ultimately causing vj
to finish later.

Proof. For a given node vj , its finish time depends on three
factors: 1) the execution time of its anc(vj); 2) the direct or
indirect interference or blocking; and 3) the execution time of vj .
The shortening of execution times for anc(vj) and vj will only
directly shorten f ′

vj . Therefore, the only reason for an increase in
f ′
vj is due to additional direct or indirect interference or blocking

of vj . This occurs because some nodes, say vx, start earlier than
their s|Λ|

vx , which consequently delays vj .

According to Lemma 2, our goal is to determine which type of
node can potentially start earlier and delay a given node vj ∈ Vi,
leading to f ′

vj > f
|Λ|
vj . First, we bound the number of nodes that

can introduce either interference or blocking, which could delay
vj . In the following analysis, Equations 2,3 and 4 are derived from
the state-of-the-art response time analysis of DAG scheduling [8].
We build upon this analysis to ensure accuracy and provide more
in-depth insights based on the remaining equations, where we
present our novel contributions.

According to [8], only the concurrent nodes Con(vj) can
impose interference or blocking delays on vj . More precisely,
according to Lemmas 4 and 5, and Theorem 1 in [8], considering
the dependency and priority constraints, the amount of possible
delay can be narrowed down to the nodes contained within
IBpotential

vj as shown in Equation 2:

IBpotential
vj = Con(vj) \ IBremove

vj (2)

As shown in Equation 3, IBremove
vj is introduced to identify

nodes that cannot impose interference or blocking delays on vj .
This set iterates over all nodes in the DAG (vx ∈ Vi) and includes
a given vx and des(vx) if either of the following two conditions
are met: 1) the priority of vx is lower, i.e., Pvx < Pvj and vx ∈
η(vj), or 2) Pvx < Pvj and the intersection of ancestors of vx
and η(vj) is non-empty, denoted by anc(vx) ∩ η(vj) ̸= ∅.

IBremove
vj =

⋃
vx∈Vi


vx ∪ des(vx), if Pvx < Pvjand

(vx ∈ η(vj)

or anc(vx) ∩ η(vj) ̸= ∅)
∅, otherwise.

(3)

To understand Equation 3, we break down each notation
included. η(vj) is introduced in Equation 4 which includes nodes
vx ∈ Vi while satisfying pre(vj) is a subset of pre(vx) which
means vx is always eligible to execute at the same time or later
than vj (i.e. fpre

vx
≥ fpre

vj
).

η(vj) =

{
vx|vx ∈ Vi ∧ pre(vj) ⊆ pre(vx) ∧ vj ̸= vx

}
(4)

Revising the conditions specified in Equation 3, the first
condition asserts that vx is a lower-priority node that is eligible
to execute with or later than vj . The second condition states
that while vx is a lower-priority node, its ancestor is eligible to
execute with or later than vj , which implies that vx itself is always

Fig. 3: An example of bounding IBremove
vj .

t0 1 2 3 4 5 6 7 8 9 10

Fig. 4: An example of bounding IBfinal
vj .

eligible to execute later than vj . Therefore, both rules indicate all
nodes in IBremove

vj cannot delay vj , because they are eligible
to execute later or at the same time with vj and the scheduler
will always schedule vj first according to the highest-priority-
first scheduling rule denoted in Section 3. An intuitive example to
illustrate IBremove

vj is provided in Example 3.

Example 3. As shown in Figure 3, for a given node vj in a DAG
task, its concurrent nodes are Con(vj) = {v2, v3, v4, v5, v6}.
Then η(vj) = {v2, v3}, which are eligible to execute at the
same time as vj since they share the same predecessor. For
v2, because Pv2 < Pvj , the scheduler will prioritise vj for
scheduling. Consequently, although Pv4

> Pvj , v4 ∈ des(v2)
and cannot interfere with vj under any circumstances. There-
fore, {v2, v4} ∈ IBremove

vj (condition 1 in Equation 3). For
{v6, v5}, because their ancestor v3 ∈ η(vj), they are eligible
to execute after vj . Since their priorities Pv5 , Pv6 < Pvj ,
{v5, v6} ∈ IBremove

vj (condition 2 in Equation 3). Overall,
IBremove

vj = {v2, v4, v5, v6} in this example.

According to Lemma 2, the only possible way for a given node
vj to execute longer than its f

|Λ|
vj is if some nodes are brought

forward to execute before vj . Therefore, we further exclude those
nodes that finish before or at the same time as the starting time
of vj (s|Λ|

vj ), as shown in Equation 5. Moreover, according to
Assumption 1, these nodes cannot finish later than their f

|Λ|
vx ,

hence they cannot further delay the start time of vj . An example
is illustrated in Example 4.

IBfinal
vj = IBpotential

vj \ {vx|vx ∈ IBpotential
vj ∧ f |Λ|

vx ≤ s|Λ|
vj }

(5)

Example 4. Figure 4 shows a scheduling example of a given DAG
task by Algorithm 1 on a dual-core system, with all nodes executed
up to their WCETs. Assume IBpotential

vj
= {v2, v4, v5, v6, v7} in

this example. As shown in the figure, {v2, v4, v5} finishes before
the time point t = 5 which is the start point of vj . Assuming they
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are deemed anomaly-free according to Assumption 1. Therefore,
they cannot further delay vj themselves. However, if they execute
shorter than their WCETs, there is a potential risk of bringing the
execution of v7 forwards and delaying vj . Therefore, IBfinal

vj =
{v6, v7}.

Moreover, for nodes in IBfinal
vj

to start earlier and delay vj ,

they should take up all cores at the time point s|Λ|
vj (when vj starts

in the simulation) and force vj to start later. Therefore, Lemma 3
is addressed to formalise this condition.

Lemma 3. For nodes in IBfinal
vj to impose either interference or

blocking delay to vj , there should be at least |Λ| number of nodes
that can execute in parallel.

Proof. For vj to finish later than its f
|Λ|
vj , it must start later than

its s|Λ|
vj . In this context, when vj is ready to be scheduled at s|Λ|

vj ,
the core must be fully occupied to delay it. Hence, there must be
|Λ| number of nodes from IBfinal

vj to execute in parallel at s|Λ|
vj

to delay vj . Otherwise, with work-conserving scheduling, vj can
always start on an empty core at s|Λ|

vj .

Furthermore, not all nodes within IBfinal
vj , despite being

parallel, can delay vj . The priority characteristics of the set of
|Λ| parallel nodes still need to be considered. To systematically
address this interaction, we propose the following lemma:

Lemma 4. For a given node vx ∈ IBfinal
vj

, if Pvx < Pvj , and
it aims to contribute to delaying vj (i.e. s′vx < s′vj ), the only
feasible scenario is when s′vx < fpre

vj .

Proof. We prove this by contradiction. Suppose for a low-priority
node vx ∈ IBfinal

vj , the conditions s′vx ≥ fpre
vj and s′vx < s′vj

hold . This suggests that at the time point fpre
vj , when vj is

eligible to execute, the scheduler chooses to execute the lower-
priority vx instead. This scenario contradicts the highest-priority-
first scheduling policy, where vj should have been scheduled
before vx if both were ready.

Based on Lemma 4, we propose the following lemma, which
specifies the priority conditions for |Λ| parallel nodes within
IBfinal

vj must satisfy in order to potentially delay vj . This further
aids in precisely determining the scheduling interactions that could
impact the timely execution of vj .

Lemma 5. For the |Λ| parallel nodes in IBfinal
vj that can impose

a delay on vj , at least one of the nodes must satisfy Pvx > Pvj .

Proof. According to Lemma 4, for nodes vx with Pvx < Pvj

to contribute to a delay, they must execute concurrently with the
latest finishing predecessor of vj , satisfying s′vx < fpre

vj . Given
that there are |Λ|−1 cores on which they can execute, a successful
delay additionally requires at least one node to execute in the
interval fpre

vj < s′vx < s′vj . Therefore, this node must have a
higher priority than vj (Pvx > Pvj ) due to the scheduling rule
“highest-priority-first”, thereby utilising the full capacity of |Λ|
cores to create the delay.

An example is presented in Example 5 to demonstrate the
concepts of Lemmas 4 and 5.

Example 5. As shown in Figure 5, assume that vpre represents the
predecessor workload of vj . vj is eligible to execute at t = 3, i.e.,
fpre
vj = 3, but is delayed until t = 5. The delaying nodes consist of

two low-priority nodes (vlow) and one high-priority node (vhigh).

t0 1 2 3 4 5 6 7

Fig. 5: An example to illustrate Lemmas 4 and 5.

The only plausible construction of the delay is that the two low-
priority nodes start before t = 3 and occupy two cores, λ1 and
λ2. The high-priority node starts at t = 3 on λ3. Consequently,
the delay extends vj’s start time from t = 3 to t = 5.

Lemma 5 represents the final step of the anomaly test which
analyses whether vj can finish later than its f |Λ|

vj in any scenario.
We build upon the analysis and propose the following theorem.

Theorem 1. For a given DAG task τi, if all vj ∈ Vi pass
the anomaly test in a scheduling scenario, the WCRT of τi in
such a scenario can be bounded by simulating the long-makespan
scenarios (i.e. calculating f

|Λ|
vsink ).

Proof. If all vj ∈ Vi pass the anomaly test in a scheduling
scenario. That means all nodes cannot finish later than their
corresponding long-makespan scenario (i.e. f ′

vj ≤ f
|Λ|
vj ) when

there are nodes in the scheduling scenario that have C ′
vj ≤ Cvj .

Hence, the timing anomaly does not exist in such a scheduling
scenario, thus its WCRT can be bounded by the makespan of its
long-makespan scenario.

The process for conducting an anomaly test to determine the
anomaly status of a scheduling scenario is as follows:

• First, Algorithm 1 is utilised to calculate the timing metrics
of each node (say vj), i.e., f |Λ|

vj and s
|Λ|
vj , which can be used

to deduce fpre
vj and the makespan of the scheduling scenario.

• Then, each node within the DAG is analysed to determine
whether it has the potential to overrun its f |Λ|

vj .
• The problem is narrowed down to whether there will be

any potentially additional delay to vj if certain nodes finish
earlier.

• The potential nodes where delays might occur – denoted
as IBpotential

vj , IBremove
vj , and IBfinal

vj in Equations (2),
(3), and (5) – are progressively narrowed down and refined
throughout the process.

• If the nodes in IBfinal
vj do not satisfy all conditions in

Lemma 3, 4, and 5, then vj will not overrun its f |Λ|
vj .

• If all nodes within a scheduling scenario are guaranteed not
to overrun their f |Λ|

vj , then the entire scheduling scenario is
deemed anomaly-free; otherwise, the scenario is considered
anomalous.

With the proposed anomaly test through static analysis, some
of the anomaly-free DAG task scheduling scenarios can be identi-
fied. At this stage, we can provide WCRT bounds for the anomaly-
free scheduling through simulation. However, the anomaly test is a
sufficient test which can only guarantee anomaly-free scheduling
scenarios that pass the test, for those who fail to pass the test,
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their anomaly status cannot be conclusively determined by static
analysis.

4.3 Binary classification model

To comprehensively understand the anomaly status of all schedul-
ing scenarios in a system, especially identifying those scheduling
scenarios that cannot be directly determined by the anomaly test.
We aim to utilise the machine-learning approach based on a wide
range of scheduling data for different scheduling scenarios to
train a model that can help to identify the anomaly status of
scheduling scenarios. The complex nature and unpredictability of
timing anomalies associated with DAG scheduling motivate such
an approach.

As introduced in Section 4.2, with the knowledge of the
DAG structure, WCET, and node priorities, the anomaly test
can be used to directly identify anomaly-free task scheduling
scenarios. Alternatively, if we run the system or its simulator
long enough, we are likely to directly observe anomaly cases
(i.e., a makespan longer than that of the simulated long-makespan
scenario) in DAG task scheduling. The longer the system operates,
the more comprehensive the data we can gather. In this context,
we frame the problem as a binary classification task, where the
input comprises scheduling scenario data, and the output indicates
whether an anomaly is present in the schedule.

Once the binary data is acquired, it is straightforward to apply
a supervised learning approach [38] to train a binary classification
model. However, there are cases where a scheduling scenario
remains undefined — neither passing the anomaly test nor being
identified as an anomaly after extensive simulation. Training
exclusively on easily identifiable data may result in a biased
model [39]. To mitigate this, we adopt a semi-supervised recursive
strategy: the model is first trained on known data and then used to
predict labels for the undefined data. Predictions made with high
confidence (e.g., 90%) are cyclically reintegrated into the training
set, enabling continuous refinement of the model.

We select Random Forest for the semi-supervised training
of our binary classification model because it effectively reduces
overfitting and variance through its ensemble approach, resulting
in stable and generalised models. Additionally, Random Forest
provides better interpretability and robustness when dealing with
limited labelled data, making it an ideal choice for our specific
needs [40].

For the binary classification model, the output is straightfor-
ward: we define the output feature as isAnomaly, a binary indicator
of whether an anomaly occurs in a given scheduling scenario.
Next, we need to extract the input features from the collected
data that represent a scheduling scenario and influence anomaly
classification. The features we selected to reflect the varying
execution times of a DAG across different releases are:

• MaxMakespan and MinMakespan: For a DAG task scheduled
on a given number of cores with multiple releases, we select
the maximum and minimum makespan observed.

• MaxWorkload and MinWorkload: The workload is the sum of
execution times of nodes in a given release of a DAG task.
With many releases observed, we find out the maximum and
minimum workload.

• MaxET, MinET, and MedianET: For a given release of a
DAG, we find out the node with maximum, minimum and
median execution times. With many releases, we observe the
maximum of these three values.

In terms of DAG structure, the following features are consid-
ered in modelling:

• NumNodes: The total number of nodes in the DAG.
• MaxParallel: The maximum number of nodes that can exe-

cute concurrently in the DAG.
• CriticalPath: The duration of the longest path through the

DAG [6].
• AvgInDegree and AvgOutDegree: The average in-degree and

out-degree per node refer respectively to the average number
of incoming and outgoing directed edges connected to a node
in a graph.

Additional relevant features include:
• CoreNum: The number of processing cores in a given

scheduling scenario.
By transforming the collected data into extracted input and

output features, we obtain a prepared dataset for model training. To
address class imbalance, a balanced labelled dataset is constructed
by ensuring equal representation of anomaly-free and anomalous
cases. This labelled dataset is randomly split into a training set and
a validation set, with the majority portion allocated for training.

For Random Forest training, the number of trees is empirically
selected to balance model stability and computational efficiency.
The training process is conducted exclusively on the training set,
which initially contains only the labelled training data. A baseline
model is first trained on this set. In each subsequent iteration, the
model is used to predict labels for a separate pool of undefined
scenarios reserved for semi-supervised training. Predictions with
confidence scores exceeding a predefined threshold are incremen-
tally added to the training set, and the model is retrained on the
updated data. This iterative process continues until convergence.

After training is complete, the final model is evaluated us-
ing the validation set, which remains strictly isolated from the
training process to ensure an unbiased assessment. Performance
is measured using standard classification metrics derived from
the confusion matrix, including Precision, Recall, F1-score, and
Accuracy for each class which will be explained in Section 5.2.

Finally, the trained model is applied to a large set of previ-
ously unseen, unlabeled scheduling scenarios. For these scenar-
ios, ground-truth labels are unavailable, making direct evaluation
infeasible. Instead, we analyse the distribution of the model’s
predicted confidence scores across this dataset. This confidence
distribution provides valuable insights into the model’s behaviour
and generalisation capability.

The integration of machine learning enhances the complete-
ness of the proposed analysis approach. It enables the utilisation
of operational data from the running system to predict the anomaly
status of scheduling scenarios from a system that cannot be easily
defined. The proposed hybrid approach, combining the anomaly
test through static analysis with machine learning techniques,
enables system engineers to comprehensively identify different
scheduling scenarios and provide more specific WCRT bounds for
DAG task scheduling.

4.4 An application of the hybrid approach
In embedded real-time systems, WCRT bounds are typically
computed during the offline design phase, based on known task
information such as DAG structures and task execution times.
These bounds are essential for verifying timing correctness prior to
system deployment. The proposed hybrid approach enhances this
offline analysis by providing tighter WCRT bounds for scheduling
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Fig. 6: An application of the hybrid approach

scenarios identified as anomaly-free. The approach is designed
for offline use only and is intended to support the design and
refinement of scheduling strategies.

During the design phase, a simulator is used to generate a
variety of scheduling scenarios by varying system configurations,
such as the number of available cores (e.g., 4, 6, or 8 cores, as
illustrated in Figure 6). Each scenario is analysed by the hybrid
approach to detect potential timing anomalies. For anomaly-free
scenarios, the resulting simulated bounds can replace pessimistic
conventional WCRT estimates [8], [26], enabling more efficient
designs. Based on these offline comparisons, designers can make
informed scheduling decisions. For instance, if a DAG task meets
its deadline with four cores, the system can safely assign only
four cores to that task, improving overall resource utilisation.
For scenarios with potential anomalies, traditional WCRT bounds
remain applicable to ensure timing safety.

The simulator-generated data are also used to train a binary
classification model, as described in Section 4.3, to further assist
in identifying scheduling scenarios. Both the training of this model
and the computation of hybrid bounds are performed offline. After
system deployment, additional data may be collected from the
running system to further improve the classification model. This
additional training remains offline and does not affect the real-time
behaviour of the system. The only online cost is data gathering,
which does not affect scheduling performance. Throughout this
process, the hybrid approach targets providing tighter offline
WCRT bounds to guide system design, and its timing complexity
is not a primary concern, as it does not impact runtime system
performance.

5 EVALUATION

In this section, we first describe the data generation of DAG
scheduling scenarios by the simulator we develop. We then detail
the training of a binary classification model. Additionally, we

evaluate the effectiveness of the proposed static analysis approach
and WCRT bounds.

5.1 The generation of DAG scheduling scenarios
Before starting the training, we first develop a DAG task generator
that manages the task’s scale through two structural dimensions:
the number of node layers, called Length and the number of nodes
within each layer, termed Parallelism. The process begins with a
single source node and incrementally adds nodes based on the
specified Length and Parallelism. It concludes with a singular
sink node. Dependencies are constructed with a 50% chance
of connecting nodes to those in the preceding layer. To ensure
cohesiveness, nodes without predecessors or successors are linked
to the source or sink node. It is worth noting that Parallelism
and Length generally control the vertical and horizontal scale
of a DAG, it does not strictly determine the number of parallel
nodes or the critical path length of a given DAG due to the
random generation of dependencies between nodes. This approach
effectively controls the DAG’s scale while enabling random con-
nections within the same scale.

We then generate a series of DAG scheduling scenarios
containing DAG tasks with varied Length ∈ [4, 15] and Paral-
lelism ∈ [4, 15] running on a set of identical Core ∈ [2, 16].
For each setting, we generate 1,000 DAG tasks. The period
of each DAG τi is randomly determined within the range of
Ti ∈ [1000ms, 3000ms]. Since the system schedules one DAG
task on dedicated cores at a time, utilisation is not critical as long
as it is within a reasonable range. The utilisation of a task is then
set to Uτi = 0.5. With utilisation determined, the total WCET of
τi is calculated by Cτi = Uτi×Ti. The WCET of each node (e.g.,
Cvj for a node vj) is then randomly distributed by Cτi , where
we enforce Cvj > 0. A unified node-level priority assignment
algorithm is applied to each DAG which follows the concepts of
front layer first and highest WCET first.

Each scheduling scenario is analysed through the anomaly
test described in Section 4.2. The scheduling scenarios that pass
the anomaly test are identified as anomaly-free and labelled ‘0’.
For the remaining scenarios, we use Algorithm 1 to simulate the
makespan of scheduling scenario 100,000 times. Each time, the
execution time of each node within a DAG is randomly varied
from 50% to 100% of its WCET. If any anomaly case (makespan
longer than that in the long-makespan scenario) is identified out
of the 100,000 simulations we label the scenario with ‘1’. This
approach imitates the execution variations that a DAG task can
incur in a scheduling scenario with different releases. For those
scenarios that are unable to identify as either ‘0’ or ‘1’, we denote
them as undefined scheduling scenarios. For other features of a
scheduling scenario denoted in Section 4.3, the MaxWorkload
and MaxMakespan are generated using 100% of the WCET of
each node. The MinWorkload and MinMakespan are generated
using 50% of the WCET of each node. The MaxET, MinET, and
MedianET are the maximum, minimum, and median of 100%
WCET of nodes within a DAG, respectively.

5.2 Binary classification evaluation
To train the model specified in Section 4.3, we randomly select
40,000 scheduling scenarios labelled with ‘1’ (anomaly) and
‘0’ (anomaly-free) respectively out of the generated data which
prepares a balanced dataset for training. Moreover, we further
collect 80,000 undefined scheduling scenarios for performing the
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Fig. 7: Learning curves on training data.

semi-supervised training. As introduced in Section 4.3, the inputs
are features that describe the scenarios, and the output is the labels
(‘0’ or ‘1’). The combined 80,000 labelled dataset is split into 80%
of the training set and 20% of the validation set which is a standard
practice.

Our Random Forest classifier, initialised with 100 trees, uses
a semi-supervised training approach. It starts with labelled data,
then predicts probabilities on the undefined dataset. Instances
with predictions above a 90% confidence threshold are added
to the training set as correctly labelled. This iterative process
continues for up to five retraining cycles or until no further
high-confidence instances or accuracy improvements are found,
effectively avoiding model bias.

Our model underwent two training rounds, achieving high
accuracy in the first round. In the second round, we incorporated
33,678 additional high-confidence instances from the undefined
dataset to potentially enhance the model’s performance. Despite
this, the lack of significant improvement in the second round
prompted us to terminate further training.

Figure 7 shows the learning curves for both training rounds.
The graphs display accuracy scores plotted against the number
of training examples, with separate lines for training and cross-
validation scores, generated using 5-fold cross-validation on the
training data (the 80%). The number of training examples in-
creases gradually. For each plot in the figure, the training examples
are split into 5 parts. The model is trained on 4 parts and validated
on the remaining part. This process is repeated 5 times, with
each fold serving as the validation set once. As for the ‘Training
Score’, the model’s performance is evaluated on the same 4 folds
it was trained on, resulting in 5 training scores. The plot shows the
average of these 5 training scores, indicating how well the model
fits the data it has just seen. For the ‘Validation Score’, the plot
illustrates the average of the 5 validation scores. Figure 7b shows
the learning curve for the second round, which includes newly
predicted data from the undefined dataset that meets the threshold.
As a result, it contains more training examples

In both rounds, the training score remains consistently close to
1.0, indicating strong fitting capacity and minimal bias. In the first
round, the cross-validation score starts near 0.992 and gradually
rises to around 0.9945, suggesting the model generalises well
as more labelled data is introduced. After incorporating 33,678
high-confidence pseudo-labelled samples in the second round, the
cross-validation score improves further, stabilising around 0.996.
This indicates a modest but clear benefit from the inclusion of
additional data.

Compared to the first round, the learning curve in the sec-
ond round shows a slower rise and a smoother convergence,
reflecting the increased sample size and potential label noise

0 1
Predicted Labels

0
1

Ac
tu

al
 L

ab
el

s

7962 59

28 7951

1000

2000

3000

4000

5000

6000

7000

Fig. 8: Confusion matrix for validation data.

TABLE 2: Classification report.

Class Precision Recall F1-score Support Accuracy

0 1.00 0.99 0.99 8021

0.9951 0.99 1.00 0.99 7979
Macro Avg 0.99 0.99 0.99 16000

Weighted Avg 0.99 0.99 0.99 16000

from the pseudo-labelled data. Nonetheless, the generalisation
gap decreases, suggesting enhanced robustness. Given that both
rounds reach a high level of stable accuracy, we conclude that the
model already performed effectively after the first round, and the
second round provides only marginal gains. Therefore, subsequent
analyses primarily reference the results from the first training
round.

The confusion matrix in Figure 8 shows the alignment between
the model’s predictions and actual outcomes conducted on the val-
idation data (the 20%). The rows represent predicted classes, while
the columns represent actual classes. The matrix indicates that the
model correctly classified 7,962 instances as class 0 and 7,951 as
class 1, representing true negatives (TN) and true positives (TP),
respectively. It also reveals 28 false positives (FP) and 59 false
negatives (FN). The high number of correct predictions and low
number of errors suggest that the model effectively distinguishes
between the classes.

Table 2 presents key classification metrics derived from the
confusion matrix, including Precision, Recall, F1-score, and over-
all Accuracy. These metrics are computed based on the standard
definitions: TP, FP, TN, and FN.

The model achieves a high Accuracy of 0.995, indicating that
99.5% of instances in the validation set are correctly classified.
Class-wise Precision and Recall are both above 0.99, demonstrat-
ing that the classifier commits very few false positives and false
negatives. Specifically, Precision (TP/(TP + FP)) quantifies the
proportion of predicted positives that are correct, while Recall
(TP/(TP + FN)) measures the proportion of actual positives that
are correctly identified.

The F1-score, calculated as the harmonic mean of Precision
and Recall, reaches 0.99 for both classes, confirming the model’s
balanced performance across sensitivity and specificity. The nearly
equal support values (8021 for Class 0 and 7979 for Class 1)
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reflect a well-balanced dataset, which contributes to stable perfor-
mance. Moreover, the high Macro and Weighted average scores
further affirm the model’s robustness and its consistent behavior
across both classes, regardless of label distribution. Overall, these
metrics provide strong evidence of the classifier’s reliability and
generalisation capability.

Furthermore, we used the entire training dataset to generate the
feature importance chart for the Random Forest classifier, shown
in Figure 9, highlights the factors affecting the model’s accuracy
of predictions. Feature importance in a Random Forest model is
determined by measuring how significantly each feature reduces
impurity (such as Gini impurity or entropy for classification) in
splits across all trees. The importance is quantified by averaging
these impurity reductions for each feature throughout the forest,
thus indicating its contribution to the model’s accuracy [41].
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Importance
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Fig. 9: Feature importance of all input features.

The feature importance plot in Figure 9 reveals that CoreNum
is by far the most influential feature, with an importance score ex-
ceeding 0.6. This dominance suggests a strong correlation between
the number of available cores and the classification of anomalies.
As explained in Lemma 2, anomalies in scheduling scenarios often
result from changes in execution order. Since the number of cores
determines the level of parallelism in task execution, it directly
affects such interactions and, consequently, the anomaly outcome.
CriticalPath and NumNodes follow as the next most important
features, albeit with substantially lower importance scores. This
is intuitive, as they influence the structural length and size of
the DAG, which indirectly affects scheduling complexity. Max-
Parallel and MedianET also contribute modestly to the model’s
decisions, indicating that execution characteristics still have some
role. In contrast, features such as AvgInDegree, AvgOutDegree,
MinMakespan, MinWorkload, and MaxWorkload show minimal
importance. These results suggest that while workload and timing
variability influence scheduling to a degree, they are secondary
to the structural and resource-based determinants like CoreNum.
Overall, the feature importance analysis provides a clear rationale
for model performance and can guide future feature selection
strategies by highlighting which features are truly influential in
predicting anomalies.

At this stage, we evaluate the effectiveness of the trained
binary classification model by applying it to 20,000 previously
unseen scheduling scenarios without ground-truth labels. These
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Fig. 10: The confidence distribution on unlabelled data

samples were not used during training and represent cases that the
anomaly test alone could not resolve, as discussed in Section 4.3.

Figure 10 illustrates the distribution of the model’s pre-
diction confidence for these unlabelled samples, comparing the
outputs from the first-round and second-round models in the
semi-supervised learning process. Both subplots show a strong
skew toward higher confidence predictions, particularly in the
range [0.9, 1.0], indicating that the models are generally confident
in their outputs. The first-round model (Figure 10a) displays a
broader spread of predictions across the intermediate confidence
range [0.5, 0.8]. In contrast, the second-round model (Figure 10b)
shows a pronounced concentration in the highest confidence bin,
suggesting an increase in certainty. This improvement is likely
a result of incorporating high-confidence pseudo-labelled data
during retraining, which helped the model better capture the
decision boundaries in the unlabelled data.

It is also evident that both models are more inclined to predict
Class 0 with higher confidence. This trend may reflect the under-
lying class distribution in the sampled 20,000 scenarios, which
could contain a greater proportion of Class 0 instances. Overall,
the second-round model demonstrates enhanced confidence and
better adaptation to the unlabelled data, validating the utility of
the semi-supervised learning approach in this context.

5.3 WCRT bounds evaluation

As shown in Figure 9, the top four relevant features are CoreNum,
CriticalPath, NumNodes, and MaxParallel. These features can be
controlled by scheduling scenarios generation settings: Core, Par-
allelism, and Length. As shown in Figure 11, we select scheduling
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(a) Parallelism = 10, Length = 8
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(b) Core = 12, Length = 8
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(c) Core = 12, Parallelism = 12

Fig. 11: The distribution of scheduling scenarios across different settings.

TABLE 3: Comparison of WCRT bounds with existing methods under varying parameters.

Parameter Value Counts MeanShorter [8] MaxShorter [8] MeanShorter [28] MaxShorter [28] MeanShorter [4] MaxShorter [4]
(Parallelism = 10, Length = 8)

Core =
10 995 16.12% 52.11% 28.92% 54.69% 27.33% 45.09%
12 1000 2.71% 36.21% 23.43% 42.64% 22.70% 36.27%
14 1000 0.08% 16.48% 19.70% 33.24% 19.36% 29.08%
16 1000 0.00% 0.00% 17.15% 30.72% 17.01% 29.59%

(Core = 12, Length = 8)
Parallelism =

9 1000 0.43% 23.00% 21.08% 35.37% 20.66% 31.15%
10 1000 2.71% 36.21% 23.43% 42.64% 22.70% 36.27%
11 1000 6.99% 40.43% 25.72% 48.15% 24.61% 39.16%
12 1000 15.42% 47.66% 28.16% 62.65% 26.51% 40.79%
13 929 21.58% 55.47% 30.47% 54.14% 28.20% 49.07%

(Core = 12, Length = 12)
Length =

9 1000 15.98% 43.42% 28.53% 45.22% 26.99% 38.42%
10 1000 15.94% 44.12% 28.64% 42.21% 27.18% 38.52%
11 999 16.63% 44.90% 29.02% 50.97% 27.57% 40.31%
12 998 16.61% 37.70% 29.19% 44.02% 27.76% 40.69%
13 996 16.61% 42.55% 29.17% 43.07% 27.82% 38.03%
14 1000 17.41% 40.94% 29.54% 40.20% 28.12% 38.72%
15 1000 17.29% 43.21% 29.58% 42.49% 28.20% 39.75%

scenarios under various settings of Core, Parallelism, and Length,
and categorised them as anomaly, anomaly-free, or undefined,
to examine anomaly behaviours across different settings. The
generation of labels is explained in Section 5.1.

As shown in Figure 11, the three sets of bar charts illustrate
the distribution of scheduling scenarios labelled as anomaly-free,
anomaly, or undefined under various settings, each containing
1,000 scheduling scenarios.

Figure 11a displays the labelling of scheduling scenarios
across different Core counts, ranging from 4 to 16, while keeping
Parallelism fixed at 10 and Length at 8. Most scheduling scenarios
are labelled as anomaly-free when Core ≥ 10. In contrast, lower
Core counts, particularly between 4 and 8, result in a significant
proportion of scenarios labelled as anomaly or undefined. This
suggests that when Core < Parallelism, anomalies are likely to
occur. When Core ≥ Parallelism, most scheduling scenarios are
anomaly-free. This occurs because when Core ≥ Parallelism,
nodes can execute in parallel, reducing contention and unpre-
dictability, thereby minimising anomalies.

A similar phenomenon is observed in Figure 11b, which shows
the distribution of labels across varying levels of Parallelism, from
9 to 15, while keeping Core and Length constant at 12 and 8.
The number of anomaly-free scheduling scenarios decreases as
Parallelism increases, while the number of anomaly or undefined
scheduling scenarios rises. This trend further supports the ob-
servation that scheduling scenarios are likely to be anomaly-free
when Core ≥ Parallelism. Additionally, there are many undefined

scheduling scenarios when Parallelism ≥ 14. These scheduling
scenarios do not pass the anomaly test, and after 100,000 rounds
of simulation, they are still challenging to identify. In this case,
the model trained in Section 5.2 can help identify their anomaly
status, enabling engineers to select a more precise WCRT solution
and improve system performance.

Following the observations from Figures 11a and 11b, we set
Core = Parallelism = 12 while increasing Length from 9 to
15. As illustrated in Figure 11c, most scheduling scenarios can
be identified as anomaly-free when Core = Parallelism, even
as the scale of the DAG task increases in Length. At this stage
of observation, from a system design perspective, tighter WCRT
bounds are achievable for scheduling scenarios when DAG tasks
are long, and Core ≥ Parallelism.

For the anomaly-free scheduling scenarios, we provide their
WCRT based on the long-makespan scenario computed by Al-
gorithm 1, which is proven to be safe in Section 4.2. We then
compare the proposed WCRT bound for each scheduling scenario
against existing bounds reported in [4], [8], [28], with the results
summarised in Table 3 to prove the effectiveness of the proposed
approach. Among these, [8] and [4] represent the most recent
works that specifically target global work-conserving scheduling
under a limited preemption scheme. The bound in [28] is also
comparable with the inclusion of limited pre-emption features.
In contrast, [6], [29] contain unresolved flaws in their analysis
and are therefore excluded from the comparison. Other existing
algorithms are based on substantially different system models or
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scheduling assumptions and are thus not considered comparable.

Table 3 consists of three parts, corresponding to the three
subfigures in Figure 11, and presents the performance of the
proposed WCRT bound when a scenario is determined to be
anomaly-free by the proposed anomaly test. The first column
indicates the parameter values of Length, Core, and Parallelism.
The second column Counts represents the number of anomaly-
free scheduling scenarios under each setting. The columns Mean-
Shorter and MaxShorter show the average and maximum percent-
age reductions of our simulated WCRT compared to the existing
methods for the same anomaly-free scheduling scenarios.

The first part of Table 3 corresponds to the anomaly-free cases
shown in Figure 11a, where the number of Cores ranges from 10
to 16 while keeping Length = 8 and Parallelism = 10 constant.
Compared to [8], when Core = 10, 995 (out of 1000) anomaly-
free scheduling scenarios exhibit an average reduction of 16.12%
in WCRT bounds, with a maximum reduction of 52.11%. As the
number of Cores increases, this advantage gradually decreases.
This trend occurs because the bound in [8] does not include
much pessimism when ample cores are available for scheduling.
However, since the proposed simulated bound is an exact bound,
it remains strictly tighter than any static analysis bound. A similar
trend is observed in the second part of the table, which corresponds
to Figure 11b. Here, Parallelism varies while keeping Core = 12
and Length = 8 constant. When Parallelism = 9, the improvement
is modest at 0.43%. However, increasing Parallelism to 13 yields
an average advantage of 21.58% across 929 scheduling scenarios,
with a maximum reduction of 55.47%.

The third part of the table, corresponding to Figure 11c,
focuses on varying Length from 9 to 15 while keeping Par-
allelism = Core = 12. In this case, the average improvement
consistently exceeds 15%. Notably, when Length = 15, a max-
imum reduction of 43.21% is observed, and the average im-
provement reaches 17.29%. Compared to prior approaches such
as [4], [28], the proposed simulated bound consistently yields
shorter WCRT estimates—typically between 20% and 30% across
all settings—demonstrating its effectiveness and superiority over
existing methods. Overall, Table 3 indicates that a substantial
number of scheduling scenarios can be identified as anomaly-free
through static analysis alone. Once a scenario is confirmed to be
anomaly-free, the proposed simulated bound provides significantly
tighter estimates than the state-of-the-art. This direct reduction in
the WCRT bound for DAG scheduling represents a substantial
advancement [6], [28].

The evaluation results show that the proposed hybrid approach
is effective. The anomaly detection through static analysis can
directly identify anomaly-free scheduling scenarios and provide
tighter bounds. For other scheduling scenarios, the trained model
can predict anomalies with high accuracy. It is important to note
that the model used here is only intended to demonstrate the
applicability of the hybrid approach and guide how machine
learning can be applied to this type of problem. This is not
a universal solution; different data or machine learning models
can be explored. If a scheduling scenario is predicted to have
an anomaly, traditional bounds can still be applied for safety.
For scenarios predicted to be anomaly-free, since the model’s
predictions are not fully accurate, the decision on which bounds to
use should be made by the system engineer based on the system’s
safety requirements.

6 CONCLUSION

In conclusion, this paper proposes a novel hybrid approach to
analyse the anomaly status of different DAG scheduling scenarios
and provide tighter WCRT bounds. The constructed anomaly test
through static analysis can be used to identify some anomaly-free
scheduling scenarios directly. Then, a binary classification model
is trained on tested anomaly-free cases and observed anomaly
cases to predict the anomaly status of undefined scheduling sce-
narios with an accuracy of 99.5%. This hybrid approach provides a
comprehensive understanding of the system, enabling significantly
tighter WCRT bounds—up to an average improvement of 21.58%
in anomaly-free scheduling scenarios and a maximum reduction
of up to 55.47%. This is the first work to provide a timing
guarantee for real-time systems by combining static analysis with
machine learning. In the future, we will extend this work to a more
complex system such as mixed-criticality multi-DAG systems,
where multiple DAG tasks are scheduled concurrently and with
different criticality levels.
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